
Modelling Systems
With Components
by Paul Warren

When I moved from Borland
Pascal 7 to Delphi I, like prob-

ably every other Pascal program-
mer, was suitably impressed with
the IDE, the RAD concept and the
cool components. I was, however,
mildly disappointed that the
elegance of OOP seemed slightly
removed from the developer. Of
course this impression was
patently untrue as I discovered
during a recent project. If anything,
Delphi components are more clev-
erly encapsulated objects than
anything I’ve previously seen.

Decision Trees
I needed to create a number of de-
cision trees for my project in order
to categorise materials according
to their toxicity, flammability and
corrosivity. My first decision tree
went something like Listing 1.

A short while later I found myself
writing virtually the same lines of
code for the next decision tree. At
this point I decided to create a
generic decision tree object.

The approach I took was to
create a component which I could
program at design time to filter any
input to the appropriate category.
Since all decisions would be simply
Yes/No I started by calling my com-
ponent a TBooleanNode. I gave it an
Enabled field (to disable nodes), an
FInput field (to hold the input), a
Criteria field (to hold the compari-
son value), and an Operator field (in
case I wanted different compari-
sons). Listing 2 shows the original
code.

I quickly realised all I would get
out of this component would be a
Yes/No answer for each input.
Sure, I could reset FCriteria pro-
grammatically at run time and call
Run again for a new Yes/No answer,
but that would be messy and a lot
of code for a such a simple task.

Another solution might be to
create an FNodes field to hold the

number of decisions and make
FCriteria an array[1..FNodes]
holding the criteria for the
decisions. Unfortunately I would
then need an array[1..FNodes] of
operators or assume all compari-
sons would use the same operator.
Not much hope here.

Somewhere in the development
process I began to wonder if my
TBooleanNode could communicate
to another instance of itself. Then,
I could connect any number of
TBooleanNode instances together
and each would evaluate the input
and send the result to the next
node. I added an FYesPipe and
FNoPipe of type TBooleanNode to the
component and modified the Run
method to evaluate the input and
pass it along to the next

component in the chain. Listing 3
shows the code I used at this stage.

If you look at the Run method
closely you will realise there has to
be another TBooleanNode connected
or you get a GPF when YesPipe.
Input is called. You could test
YesPipe to see if it’s not nil but I
thought a TEndNode component
which could be connected to a
TBooleanNode might be a better
approach, especially since the
TEndNode component could take
care of reporting the result of the
decision tree.

To complete the project I needed
to create a base class for both the
TBooleanNode and the TEndNode so
they could be used interchange-
ably. I created a TNode object as the
base class and moved the FInput,

TOperator =
 (opEquals, opGreaterThan, opGreaterOrEqual, opLessThan, opLessOrEqual);
TBooleanNode = class(TComponent)
 private
 FInput: Single;
 FEnabled: Boolean;
 FCriteria: Single;
 FOperator: TOperator;
 public
 constructor Create(AOwner: TComponent); override;
 procedure Run;
 published
 property Input: Single read FInput write FInput;
 property Enabled: Boolean read FEnabled write FEnabled default True;
 property Criteria: Single read FCriteria write FCriteria;
 property Operator: TOperator read FOperator write FOperator;
 end;

constructor TBooleanNode.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FEnabled := true;
end;

procedure TBooleanNode.Run;
begin
end;

➤ Listing 2

if variable > 38 then
 class := ’B1’;
if variable > 48 then
 class := ’B2’
else
 class := ’No classification’;

➤ Listing 1

36 The Delphi Magazine Issue 8

FYesPipe and FNoPipe fields to TNode.
I created a procedure Run; vir-
tual; abstract; for TNode and re-de-
clared TBooleanNode and the new
TEndNode as class(TNode). Listing 4
shows the working code for the
components.

In order to report the results of
running these connected compo-
nents I added an FResultStr field
and an AfterRun event to TEndNode.
When these components are com-
piled into the component library
they can be connected into nearly
any kind of decision tree you may
want. You just place TBooleanNodes
on your form and set the criteria
and operators for each node and
join them as needed. End each pos-
sible path with a TEndNode holding
the appropriate string and connect
all the TEndNode AfterRun events to
the same method. Listing 5 shows
an example of the code to display
the ResultStr in a label. There are
two demo programs included on
the free disk which show the versa-
tility of these components. Figure 1
shows a screen capture of the de-
sign time form for the BooleanProj

TBooleanNode = class(TNode)
 private
 FInput: Single;
 FEnabled: Boolean;
 FCriteria: Single;
 FOperator: TOperator;
 FYesPipe: TBooleanNode;
 FNoPipe: TBooleanNode;
 protected { Protected declarations }
 public
 constructor Create(AOwner: TComponent); override;
 procedure Run;
 published
 property Input: Single read FInput write FInput;
 property Enabled: Boolean
 read FEnabled write FEnabled default True;
 property Criteria: Single
 read FCriteria write FCriteria;
 property Operator: TOperator
 read FOperator write FOperator;
 property YesPipe: TNode read FYesPipe write FYesPipe;
 property NoPipe: TNode read FNoPipe write FNoPipe;
 end;

constructor TBooleanNode.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FEnabled := true;
 FYesPipe := nil;
 FNoPipe := nil;
end;

procedure TBooleanNode.Run;
begin
 case operator of
 opEquals :
 if FInput = FCriteria then begin
 YesPipe.Input := FInput;
 YesPipe.Run;
 end else begin

 NoPipe.Input := FInput;
 NoPipe.Run;
 end;
 opGreaterThan :
 if Input > Criteria then begin
 YesPipe.Input := Input;
 YesPipe.Run;
 end else begin
 NoPipe.Input := Input;
 NoPipe.Run;
 end;
 opGreaterOrEqual :
 if Input >= Criteria then begin
 YesPipe.Input := Input;
 YesPipe.Run;
 end else begin
 NoPipe.Input := Input;
 NoPipe.Run;
 end;
 opLessThan :
 if Input < Criteria then begin
 YesPipe.Input := Input;
 YesPipe.Run;
 end else begin
 NoPipe.Input := Input;
 NoPipe.Run;
 end;
 opLessOrEqual :
 if Input < Criteria then begin
 YesPipe.Input := Input;
 YesPipe.Run;
 end else begin
 NoPipe.Input := Input;
 NoPipe.Run;
 end;
 end; {case}
end;

demo with the nodes added and
Figure 2 shows the demo applica-
tion displaying the result of
running the decision tree.

Real Properties
Only one problem remained in im-
plementing this system. Occasion-
ally I would have to use floating
point types in the decision tree.
This would be easy if all the ma-
chines I have to support had 80x87
co-processors. The FCriteria and
FInput properties could simply
be re-declared as type Double.

Unfortunately there is no built-in
support for property editors of
type real (I have had this problem
with other components as well).
The solution is to write a property
editor which emulates real types.

Listing 6 shows the code for a
simple property editor which acts
as an editor for real types by
accepting a string input and
checking to see if it can be con-
verted to a real. This allows the
user to edit the property in the
Object Inspector as if it was a real.
With the addition of a protected

➤ Listing 3

➤ Figure 1

April 1996 The Delphi Magazine 37

property AsReal, for run-time use,
we can use real types in any
component. Any time a property is
declared as type TRealStr it will
work in the Object Inspector as if it
were a real.

The final step then was to change
the FInput property to a private
field Input: real; and add an
InputAsReal property in TNode.
Then I changed the FCriteria prop-
erty to a TRealStr and added a
CritAsReal property to TBoolean
node. You will find the complete
code on the disk with this issue. As
you will see from the demos you
can set the FCriteria property to
any valid floating point number
within the range for type real even
without a co-processor. (As a
bonus you will find a useful editor
for real types on the disk).

I was pleased with the results of
this little project because the code

type
 TNode = class(TComponent)
 private
 FInput: Single;
 FYesPipe: TNode;
 FNoPipe: TNode;
 procedure Run; virtual; abstract;
 published
 property Input: Single read FInput write FInput;
 end;
 TOperator = (opEquals, opGreaterThan, opGreaterOrEqual,
 opLessThan, opLessOrEqual);
 TBooleanNode = class(TNode)
 private
 FEnabled: Boolean;
 FCriteria: Single;
 FOperator: TOperator;
 protected { Protected declarations }
 public
 constructor Create(AOwner: TComponent); override;
 procedure Run; override;
 published
 property Enabled: Boolean
 read FEnabled write FEnabled default True;
 property Criteria: Single read FCriteria write FCriteria;
 property Operator: TOperator
 read FOperator write FOperator;
 property YesPipe: TNode read FYesPipe write FYesPipe;
 property NoPipe: TNode read FNoPipe write FNoPipe;
 end;
 TEndNode = class(TNode)
 private
 FResultStr: string;
 FAfterRun: TNotifyEvent;
 procedure SetAfterRun(Value: TNotifyEvent);
 protected
 procedure After; dynamic;
 public
 procedure Run; override;
 published
 property ResultStr: string
 read FResultStr write FResultStr;
 property AfterRun: TNotifyEvent
 read FAfterRun write SetAfterRun;
 end;
constructor TBooleanNode.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FEnabled := true;
 FYesPipe := nil;
 FNoPipe := nil;
end;

procedure TBooleanNode.Run;
begin
 case operator of

 opEquals :
 if Input = FCriteria then begin
 YesPipe.Input := FInput;
 YesPipe.Run;
 end else begin
 NoPipe.Input := FInput;
 NoPipe.Run;
 end;
 opGreaterThan :
 if Input > FCriteria then begin
 YesPipe.Input := FInput;
 YesPipe.Run;
 end else begin
 NoPipe.Input := FInput;
 NoPipe.Run;
 end;
 opGreaterOrEqual :
 if Input >= FCriteria then begin
 YesPipe.Input := FInput;
 YesPipe.Run;
 end else begin
 NoPipe.Input := FInput;
 NoPipe.Run;
 end;
 opLessThan :
 if Input < FCriteria then begin
 YesPipe.Input := FInput;
 YesPipe.Run;
 end else begin
 NoPipe.Input := FInput;
 NoPipe.Run;
 end;
 opLessOrEqual :
 if Input < FCriteria then begin
 YesPipe.Input := FInput;
 YesPipe.Run;
 end else begin
 NoPipe.Input := FInput;
 NoPipe.Run;
 end;
 end;
end;

procedure TEndNode.SetAfterRun(Value: TNotifyEvent);
begin
 FAfterRun := Value;
end;

procedure TEndNode.After;
begin
 if Assigned(FAfterRun) then FAfterRun(Self);
end;
procedure TEndNode.Run;
begin
 After;
end;

was reusable and generic, the
nodes could be programmed at
design or run time and the results
of each decision tree run could be
output in different ways. I use a
monolog speech component to

output the result verbally in one
implementation. On calling Run for
the top node the input automat-
ically cascades down the decision
tree in a way which seems almost
human.

➤ Listing 4

procedure TForm1.EndNodeXAfterRun(Sender: TObject);
begin
 Label1.Caption := (Sender as TEndNode).ResultStr;
end;

➤ Listing 5

➤ Figure 2

38 The Delphi Magazine Issue 8

What Next?
This started me thinking in two dif-
ferent directions: modelling other
systems, such as neural nets and
fuzzy logic, and providing compo-
nents to my users in the same way
Delphi provides components to
developers.

I haven’t proceeded with the
former yet, but I have started
experimenting with the latter. Also
included on the disk is a suite of
components which mimic elec-
tronic components. There is a
TConductor, a TBattery, TSwitch,
TResistor and TLamp. They are
implemented in much the same

way as TBooleanNode and TEndNode.
Figure 3 shows the example.

I fully realise the behaviour of
these components is not yet
correct, but they do illustrate well
the idea of modelling real life
systems with components. I hope
to return to this theme in another
article, so watch this space!

The real challenge of course is to
develop a system of providing
modelling components to the end
user. This requires giving these
components a visual repre-
sentation, creating them at run
time and providing a property
interface to the user. The results of

this effort will be quite astounding.
I can easily envision an electronics
lab for students where complete
circuits can be created at runtime
to test theories and predict
behaviour.

The more I use Delphi the greater
the potential I can see using this
superb language and IDE. I have
recently wondered if Delphi is a
true case of the whole being more
than the sum of its parts. Does
Borland really know what they
have created?

The only complaint I have now
about Delphi is that it has caused
me to explore in too many direc-
tions at the same time and I don’t
have enough time to explore them
all. Please help! If this article starts
anyone toward creating end-user
components please publish your
code and let me know how you
accomplished it. Oh, and if anyone
creates an artificial intelligence do
make sure it’s benign...!

Paul Warren runs HomeGrown
Software Development in
Langley, British Columbia, Canada
and can be contacted by email at
hg_soft@haven.uniserve.com

Installing The Components
To install the components which
I’ve discusssed in this article you
will need to copy the following
files from the disk into a directory
on Delphi’s search path:

NODES.PAS
NODES.DCR
ENHEDITS.PAS
ENHEDITS.DCR
ELECTRIC.PAS
ELECTRIC.DCR
STRLIB.PAS

then using Install Components
(first carefully backing up your
COMPLIB.DCL...!) install the files:

NODES.PAS
ENHEDITS.PAS
ELECTRIC.PAS

When your COMPLIB.DCL has re-
compiled you can then try out the
example projects included on the
disk.

➤ Figure 3

type
 TRealStr = string[20];
 TRealStrProperty = class(TStringProperty)
 function GetValue: string; override;
 procedure SetValue(const Value: string); override;
 end;

function TRealStrProperty.GetValue: string;
begin
 Result := LRTrim(Chop(GetStrValue, 20));
end;

procedure TRealStrProperty.SetValue(const Value: string);
var
 Temp: string[20];
 code: integer;
begin
 Temp := LRTrim(Value);
 StrToReal(code, Value);
 if code <> 0 then
 MessageDlg(’Value must be a real number’, mtError, [mbOk], 0)
 else
 SetStrValue(Value);
end;

procedure Register;
begin
 RegisterPropertyEditor(TypeInfo(TRealStr), nil, ’’, TRealStrProperty);
end;

➤ Listing 6

April 1996 The Delphi Magazine 39

	Decision Trees
	Real Properties
	What Next?
	Installing the Components

